a2 United States Patent
Chen et al.

US009354919B2

US 9,354,919 B2
May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND DEVICE FOR LOADING

ANDROID VIRTUAL MACHINE

APPLICATION

(71) Applicant: TENCENT TECHNOLOGY
(SHENZHEN) COMPANY LIMITED,
Shenzhen, Guangdong (CN)

(72)

Inventors: Shuhua Chen, Shenzhen (CN); Yunfeng

Dai, Shenzhen (CN)
(73) TENCENT TECHNOLOGY
(SHENZHEN) COMPANY LIMITED,
Shenzhen (CN)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

@
(22)

Appl. No.: 14/478,030

Filed: Sep. 5,2014

(65) Prior Publication Data

US 2014/0380313 Al Dec. 25, 2014

Related U.S. Application Data

(63) Continuation of application No.

PCT/CN2013/088550, filed on Dec. 4, 2013.

(30) Foreign Application Priority Data

Jun. 4,2013 (CN) .o 2013 1 0219141

(51) Int.CL
GOGF 3/00
GOGF 9/00

(2006.01)
(2006.01)

(Continued)

(52) US.CL
CPC ... GOGF 9/45558 (2013.01); GOGF 9/4416
(2013.01); GO6F 9/4401 (2013.01); GO6F

2009/45562 (2013.01)

Scheduling module

(,,—110

(/“"102

boot-object loading
module

Managem
loading

/4’—104

(58) Field of Classification Search
CPC .. GOG6F 9/54; GOGF 2009/4557; GOGF 9/4416
USPC oottt 719/310; 713/2
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0081212 Al* 4/2005 Goudc.c..... GOGF 9/45558
718/107
2007/0074208 Al* 3/2007 Lingccccoeeveenn GOGF 9/45558
718/1

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101493781 A 7/2009
CN 101689127 A 3/2010
OTHER PUBLICATIONS

Frank Maker, A Survey on Android vs. Linux, 2009.*
(Continued)

Primary Examiner — Lechi Truong
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

A method and a device for loading a virtual machine appli-
cation are provided herein. An exemplary method comprises:
loading a management object of the virtual machine by the
layer-booting object; reading the virtual machine configura-
tion by the management object of the virtual machine; and
invoking a creation function of the management object of the
virtual machine by the virtual machine configuration and
creating an operational instance of the virtual machine. The
Android loading method and device for a virtual machine can
be used to improve switching speed between instances.

16 Claims, 4 Drawing Sheets

(//—112

Virtual machine
switching module

‘/—-—114

ent object

Virtual machine

module

creating module

Configuration

108
106

Virtual machine

reading module

configuration
initialization madule

US 9,354,919 B2

Page 2
(51) Imnt.ClL 2012/0124270 Al* 5/2012 Weissman GOGF 12/023
711/6
GOOF 9/455 (2006.01) 2014/0053272 Al* 2/2014 Lukacs GOGF 21/53
GO6F 9/44 (2006.01) 726/24
OTHER PUBLICATIONS

(56) References Cited

International Search Report issued Mar. 6, 2014 in corresponding
U.S. PATENT DOCUMENTS International Patent Application No. PCT/CN2013/088550.
Chinese Office Action issued Oct. 23, 2015 in corresponding Chinese
2011/0238969 Al* 9/2011 Warkentin GOGF 9/441 Patent Application No. 201310219141.8.

713/2
2012/0084481 Al 4/2012 Reeves et al.

* cited by examiner

U.S. Patent May 31, 2016 Sheet 1 of 4 US 9,354,919 B2

5102

Load the layer-booting object

S104

Load the management object of the virtual machine throughout
the layer-booting object

(" 8106

Read the virtual machine configuration throughout the
management object of the virtual machine

(f”’“ $108

Invoke the creation function of the management object of the ‘
virtual machine throughout the virtual machine configuration |

and creating an operational instance of the virtual machine ‘
|

Fig. 1

U.S. Patent May 31, 2016 Sheet 2 of 4 US 9,354,919 B2

Applications layer

D
—

N

-~

Application Framework layer

Android Runtime layer

S

Linux Kernel layer

N Y

Bootloader layer

N
N

Fig. 2
FAN //Operational instance of ™ 'Operational instance of ™ Operational instance of ™
the virtual machine 1 the virtual machine 2 the virtual machine n
[- h (" avolicat \ . ™
\\ Applications layer } Applications layer { Applications layer j
AN 4 \.
/ Application \ (// Application R ;~ Application \
A Framework layer /‘ _ Framework layer J L\ Framework layer /
(Andiroid Runti V|| (Android Runtime layer) / Android Runtime layer)
\ ndroid Runtime layer) KAndrmd Runtime Iayey { Android Runtime layer)
. / J
an T ™ () \
{ Linux Kernel layer) \ Linux Kernel layer) Linux Kernel layer
\\ / \ 7 AN //
S/ .
e _)) ™
{ Management object of the virtual machine]
N
3
(\ Bootloader layer //

Fig. 3

U.S. Patent

May 31, 2016

Sheet 3 of 4 US 9,354,919 B2

\
.

AN 7~ Operational instance of ™

the virtual machine 1 the virtual machine 2 the virtual machine n

/ A A I \
. . . . A} . .

(\ Applications layer) l\ Applications layer /) « Applications layer }
(/ Application \ / Application \) ,/ Application \\
__Framework layer / . Framework layer / _ Framework layer /
e I/—ﬁ T
(Android Runtime layer } { Android Runtime layer] \/:Android Runtimelayer\,

Operational instance of ™\ /~ Operational instance of ™

/

N N
/

T ™ T \\‘
\ Zygote process 2) { Zygoteprocessn
. . e
\\
Management object of the virtual machine)
™
Linux Kernel layer)

Bootloader layer

AN

(/”‘"102

Fig. 4

104

S~

Boot-object loading
module

Management object
loading module

108
106

—

Virtual machine
configuration
initialization._module

Configuration
reading module

Fig. S

U.S. Patent May 31, 2016 Sheet 4 of 4 US 9,354,919 B2

(/—-110 (/.—112

Virtual machine
switching module

{//'-'—‘102 ///—104 {/-—-114

Scheduling module

boot-object loading Management object Virtual machine
module loading module creating module
108

Virtual'machine
configuration
initialization madule

{ 106
Configuration

reading module

Fig. 6

1110 /T**\f RF circuit ~ 1170
1150 1160
. A
—\‘ﬁ 118&\\ /’f 77 Speaker 1161
Power | S e
SUPPWj (B Audio circuit
1 120\‘ rocessor ~ Microphone
1162
\,
N memory il i sensor 1150
F-X
routdeve | 8L |
1 130\\\ Touch panel 1%/'/' § Display device /,('1 140
N j‘ | oisplay panel |
Otherinput device | f
114

Fig.7

US 9,354,919 B2

1
METHOD AND DEVICE FOR LOADING
ANDROID VIRTUAL MACHINE
APPLICATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of Interna-
tional Application PCT/CN2013/088550, filed Dec. 4, 2013,
and claims priority to Chinese Patent Application No.
201310219141.8, filed on Jun. 4, 2013, the entire contents of
which are incorporated herein by reference.

FIELD OF THE INVENTION

The present disclosure generally relates to Internet tech-
nology and, more particularly, relates to a method and a
device for loading an android virtual machine application.

BACKGROUND OF THE INVENTION

Currently, Android mobile devices have a lot of security
problems, such as computer viruses or system vulnerabilities.
On the other side, Android devices introduce more and more
important applications, such as mobile payment, mobile
security, etc. However, protection provided by the current
security software is quite limited, users need an absolutely
clean and safe environment to apply critical operations.

In order to provide such a clean and safe environment, a
virtualization or multi-operating system is clearly a better
solution.

However, by analysis, the inventors have found at least the
following problem existing in the traditional technology: the
Android virtual method in the prior art adopts operating sys-
tem of multiple versions, and each operating system is loaded
and run as a separate virtual machine. To switch between
virtual machines, a way of restarting the current virtual
machine and then selecting a target virtual machine is abso-
lutely needed. That is, the current way for switching between
virtual machines is a cold switching way, resulting in ineffi-
ciency for the virtual machines to switch from each other.

SUMMARY OF THE INVENTION

One aspect of the present disclosure includes a method for
loading an android virtual machine application. The method
can be implemented by a mobile terminal. In an exemplary
method, the method comprises: loading a layer-booting
object; loading a management object of the virtual machine
by the layer-booting object; reading the virtual machine con-
figuration by the management object of the virtual machine;
invoking a creation function of the management object of the
virtual machine by the virtual machine configuration and
creating an operational instance of the virtual machine.

Another aspect of the present disclosure includes a device
for loading an android virtual machine application. The
device can include a mobile terminal. The mobile terminal
includes a boot-object loading module configured to load the
layer-booting object; a management object loading module
configured to load the management object of the virtual
machine by the layer-booting object; a configuration reading
module configured to read the virtual machine configuration
by the management object of the virtual machine; a virtual
machine configuration initialization module configured to
invoke the creation function of the management object of the
virtual machine by the virtual machine configuration and
creating an operational instance of the virtual machine.

15

20

25

35

40

45

2

Another aspect of the present disclosure includes a non-
transitory computer readable storage medium storing one or
more programs, the one or more programs comprising
instructions, which, when executed by a mobile device hav-
ing one or more processors and a display, cause the mobile
device to perform operations including: loading a layer-boot-
ing object; loading a management object of the virtual
machine by the layer-booting object; reading the virtual
machine configuration by the management object of the vir-
tual machine; invoking a creation function of the manage-
ment object of the virtual machine by the virtual machine
configuration and creating an operational instance of the vir-
tual machine.

Other aspects of the present disclosure can be understood
by those skilled in the art in light of the description, the
claims, and the drawings of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings are merely examples for illustra-
tive purposes according to various disclosed embodiments
and are not intended to limit the scope of the disclosure.

FIG. 1 is a flow chart of an exemplary method for loading
the Android virtual machine, in accordance with one embodi-
ment;

FIG. 2 is a block diagram of an Android system layer
structure, in accordance with one embodiment;

FIG. 3 is a block diagram of a virtual machine layer struc-
ture booted by a Bootloader layer, in accordance with one
embodiment;

FIG. 4 is a block diagram of a virtual machine layer struc-
ture booted by the Linux kernel layer, in accordance with one
embodiment;

FIG. 5 is a block diagram of a device for loading an
Android virtual machine, in accordance with one embodi-
ment;

FIG. 6 is a block diagram of a device for loading the
Android virtual machine, in accordance with another
embodiment;

FIG. 7 is a block diagram of a device for loading the
Android virtual machine, in accordance with still another
embodiment.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Reference will now be made in detail to exemplary
embodiments of the disclosure, which are illustrated in the
accompanying drawings.

In one embodiment, as shown in FIG. 1, a method for
loading an Android virtual machine is illustrated. The method
is based entirely on computer program. The computer pro-
gram can run on mobile devices based on the Android system,
such as Android smart phones, Android tablet PC, Android
smart glasses, etc.

As shown in FIG. 2, the Android system is a multilayer
structure. From bottom to top, the Android system includes a
Bootloader layer, a Linux Kernel layer, an Android Runtime
layer, an Application Framework layer and an Application
layer.

In this embodiment, the Bootloader layer serves as a guid-
ing layer. It is used to initialize hardware equipment, and
establish a memory mapping table. It is also used to lead a
hardware and software environment of the Android system to
a suitable state. So it can make a correct environment which is
ready for the final calls to the operation system kernel.

US 9,354,919 B2

3

The Linux Kernel is a Linux Kernel instance. The Linux
Kernel instance is used to analyze a Linux layer kernel code
into machine language. The Linux Kernel instance runs on the
Android operating system. In addition, the Linux Kernel
instance includes hardware drivers, such as a camera driver, a
blue tooth adapter driver, a touch screen driver and a USB
driver, etc.

The Android Runtime is used to explain the Android layer
kernel which implements the Android code. In this embodi-
ment, the Android Runtime includes an Android system func-
tion library, such as a WebKit library, a SSL library and a
SQLite library.

The Application Framework layer is an application frame-
work layer. It is used to control an upper application for
loading, running and cancellation. And, The Application
Framework layer provides various services for the upper
application, such as a Location Manager component, a XMPP
Service module and an activity manager module, etc.

The Application layer is an application layer. It is a specific
application, such as a mobile phone browser, a micro message
and a contact management, etc.

In this embodiment, the method includes the following
steps:

Step S102, loading a layer-booting object.

A layer-booting object is a program unit used to load
Android operating system kernel.

In this embodiment, a level boot object may be a Boot-
loader layer object, such as the Bootloader object used to load
the Linux layer kernel, as described above. That is to say,
virtualization can be realized in Linux Kernel layer, and sev-
eral operational instances of virtual machines in Linux Kernel
layer can be led to create by the Bootloader layer object.

In this embodiment, the Android equipment is based on an
ARM processor. In an embedded system of the Android
equipment, the BootLoader program generally occupies a
memory address 0x00000000. When the Android device
starts or reset, it begin to execute and load the layer boot-
object from the memory address 0x00000000.

Step S104, loading a management object of the virtual
machine by the layer-booting object.

The virtual machine management object is a program unit
used to create, allocate and cancel the operational instance of
the virtual machine. In this embodiment, the program unit
corresponding to the virtual machine management object can
be loaded by the Bootloader layer object.

Step S106, reading the virtual machine configuration by
the management object of the virtual machine.

A configuration of the virtual machine is a configuration
file of the operational instance in a virtual machine needed to
be loaded. The configuration of the virtual machine may
include the number of the virtual machine, identification of
the virtual machine, a file list corresponding to the operational
instance of the operational instance of the virtual machine,
and a storage location corresponding to the operational
instance of the operational instance of the virtual machine.

In this embodiment, the configuration of the virtual
machine further includes a processor status register instruc-
tion set (PSR, Processor state Register) corresponding to the
operational instance of the operational instance of the virtual
machine. After the instruction set processor status register is
read by the virtual machine management object, the PSR
instruction set is encoded by invoking the instruction encod-
ing function of the virtual machine management object.

In this example, each operational instance may have a
special virtual machine running state of each processor. This
is achieved by coding the PSR instruction set corresponding
to the operational instance of the virtual machine. In this

10

15

20

25

30

35

40

45

50

55

60

65

4

example, providing the processor with different operating
conditions for each operational instance of the virtual
machine is needed. But the instruction accessing the proces-
sor status register (CPSR) is fixed: such as MRS, MSR,
ADDS etc.

For example, the PSR instruction set corresponding to the
operational instance of the virtual machine can be replaced by
the SWI xxx. The XXX is the recode of each instruction. For
example, the MRS instructions can be encoded as 0x1000,
and the MSR as 0x1001. But the XXX must be not consistent
with the software interrupt number corresponding to the
operational instance of the virtual machine. After encoding
the PSR instruction Set in accordance with such method, the
processor state could be virtual through the software interrupt
instruction SWI. Then the operational instance of the virtual
machine later created can be corresponded with the indepen-
dent processor state of each other.

Step S108, invoking the virtual machine creation function
of the virtual machine management object according to the
virtual machine configuration, and creating the operational
instance of the virtual machine.

In this embodiment, the virtual machine creation function
of'the virtual machine management object can load the opera-
tional instance of the virtual machine into the memory,
according to the number of virtual machine defined by the
virtual machine configuration and the instance program file
list corresponding to the operational instance of the virtual
machine.

Further, the PSR instruction set coded can be set as the PSR
instruction set corresponding to the operational instance of
the virtual machine.

In this embodiment, the method comprises: intercepting
the interruption instructions and/or abnormal instructions by
the management object of the virtual machine; accepting a
memory location corresponding to the instructions and/or
abnormal instructions; transmitting the instructions and/or
abnormal instructions to corresponding instructions handling
function and/or abnormal handling function of the opera-
tional instance of the virtual machine by the memory location.

Because of the interruption and exception table corre-
sponding to each operational instance of the virtual machine
have a fixed location in memory, the operational instance of
the virtual machine which the interruption the instruction
and/or abnormal instruction belong can be judged according
to the memory address, and the respective interruption and/or
abnormal of the operational instance of the virtual machine
can be handled by their own respective interruption handling
function and/or abnormal handling function.

In this embodiment, the system architecture of the Boot-
loader layer-booting virtual machine based on object is
shown in FIG. 3.

In another embodiment, the layer boot object is the Linux
Kernel layer object. The Linux Kernel layer object is used to
load the Android Runtime layer, which is the Android kernel.
That is to say, the virtualization is realized in Android Runt-
ime layer. The operational instances of the virtual machines
of'a several of Android Runtime layer are led to create by the
Linux Kernel object boot. For example, firstly, the start of the
zygote process can be removed from the system init.rc con-
figuration. Then the start of the virtual machine management
objectis added, and the virtual machine management object is
created from the Linux Kernel layer object boot.

In this embodiment, the step of invoking a creation func-
tion of the management object of the virtual machine by the
virtual machine configuration and creating an operational
instance of the virtual machine, comprises: invoking the cre-
ation function of the management object of the virtual

US 9,354,919 B2

5

machine by the virtual machine configuration and creating an
zygote process; and creating an operational instance of the
virtual machine based on Android Runtime layer by the
Zygote process.

That is to say, the virtual machine management object is
loaded by the Linux Kernel layer object. Then, the virtual
machine management object creates multiple zygote pro-
cesses (also called seed process) according to the number of
operational instance of the virtual machine and their virtual
machine identification identified by the virtual machine con-
figuration. Then, every seed process creates the correspond-
ing operational instance of the virtual machine. In this
embodiment, the virtual machine system architecture based
on the Linux Kernel layer boot object is shown in FIG. 4.

The memory utilization rate increases, because several
operational instances of the virtual machines share a same
Linux Kernel layer loaded based on the Kernel layer Linux
object boot mode. So, several operational instances of the
virtual machines in memory only occupy a same area. That
means a smaller memory footprint.

In this embodiment, the method further comprises: accept-
ing a switching instructions of the virtual machine; and invok-
ing a switching function of the management object of the
virtual machine by the switching instructions of the virtual
machine and switching the operational instance of the virtual
machine.

In one scenario of this embodiment, the user inputs the
virtual machine switching instruction, by clicking on the
Android button on a device. Preferably, the virtual machine
switching instruction may include virtual machine identifica-
tion. The virtual machine identification is from the target
switching operational instance of the virtual machine selected
by the user. The virtual machine instructions, as a function of
parameters, are passed to the virtual machine switching func-
tion of the virtual machine management object. The virtual
machine switching function accesses to the area of memory
corresponding operational instance of the virtual machine
according to the virtual machine identification. The virtual
machine switch function makes the operational virtual
machine instance activation. In the display interface, users
can quickly switch to the target operational instance of the
virtual machine without restarting.

In this embodiment, the method further comprises: accept-
ing a creation instructions of the virtual machine and invoking
a creation function of the management object of the virtual
machine by the creation instructions of the virtual machine
and creating the operational instance of the virtual machine.

That is to say, when the Android device is turned on and
used, the user can always create a new operational instance of
the virtual machine. Preferably, in the virtual machine cre-
ation instructions, parameters for the creation of virtual
machine inputted by users also is included, such as virtual
machine identification parameter information. According to
the parameters, the operational instance of the virtual
machine can be created by the virtual machine creation func-
tion.

In this embodiment, as shown in FIG. 5, a device for
loading a virtual machine application includes a boot-object
loading module 102, a management object loading module
104, a configuration reading module 106, and a virtual
machine configuration initialization module 108.

The boot-object loading module 102 is configured to Load
the layer-booting object;

The management object loading module 104 is configured
to load the management object of the virtual machine by the
layer-booting object;

10

15

20

25

30

35

40

45

50

55

60

65

6

The configuration reading module 106 is configured to
read the virtual machine configuration by the management
object of the virtual machine;

The virtual machine configuration initialization module
108 is configured to invoke the creation function of the man-
agement object of the virtual machine by the virtual machine
configuration and creating an operational instance of the vir-
tual machine.

In one embodiment, the layer boot object is the Bootloader
layer object.

The virtual machine configuration initialization module
108 is further configured to invoke the creation function of the
management object of the virtual machine by the virtual
machine configuration and create an operational instance of
the virtual machine based on Linux Kernel layer.

In one embodiment, the virtual machine configuration fur-
ther includes a processor status register instruction set corre-
sponding to the operational instance of the virtual machine.

The configuration reading module is further configured to
code the processor status register instruction set by invoking
an instruction coding function of the management object of
the virtual machine.

In one embodiment, as shown in FIG. 6, a device for
loading a virtual machine application further includes an
instructions scheduling module 110, which is configured to
intercept the interruption instructions and/or abnormal
instructions by the management object of the virtual machine,
and is configured to accept a memory location corresponding
to the instructions and/or abnormal instructions, and is con-
figured to transmit the instructions and/or abnormal instruc-
tions to corresponding instructions handling function and/or
abnormal handling function of the operational instance of the
virtual machine by the memory location.

In one embodiment, the layer boot object is the Linux
Kernel layer object.

The virtual machine configuration initialization module
108, is further configured to invoke the creation function of
the management object of the virtual machine by the virtual
machine configuration and creating a zygote process and to
create an operational instance of the virtual machine based on
Android Runtime layer by the zygote process.

In one embodiment, as shown in FIG. 6, a device for
loading a virtual machine application further includes a vir-
tual machine switching module 112. The virtual machine
switching module 112 is configured to accept a switching
instructions of the virtual machine and to invoke a switching
function of the management object of the virtual machine by
the switching instructions of the virtual machine and switch-
ing the operational instance of the virtual machine.

In one embodiment, as shown in FIG. 6, a device for
loading a virtual machine application further includes a vir-
tual machine creating module 114. The virtual machine cre-
ating module 114 is configured to accept a creation instruc-
tion of the virtual machine. In addition, the virtual machine
creating module 114 is used to invoke a creation function of
the management object of the virtual machine by the creation
instructions of the virtual machine and creating the opera-
tional instance of the virtual machine.

The Android virtual machine loading method and the
device of loading the virtual machine management object
introduce the layer boot object boot. Then, several opera-
tional instances of the virtual machines are loaded by the
virtual machine management object. When switching
between operational instances of the virtual machine, the
virtual machine management object switches between mul-
tiple operational instances of the virtual machine that it loads.
This method does not need to restart the Android equipment

US 9,354,919 B2

7

and select the corresponding virtual machine to load when
being led by the Bootloader boot. Therefore, switching
between the operational instances of the virtual machine is a
hot switching, thus switching speed is increased.

The methods and device in accordance with various
embodiments can be accomplished by using a program/soft-
ware to instruct related hardware. The hardware can include
any suitable universal hardware, or any suitable specialized
hardware including, e.g., specialized integrated circuits, spe-
cialized central processing unit (CPU), specialized memory,
specialized components, etc. For example, the hardware can
include personal computer, server, network device, etc. The
program/software can be stored in a computer-readable stor-
age medium including, e.g., ROM/RAM, magnetic disk, opti-
cal disk, etc. the computer-readable storage.

The embodiment of the invention also provides an Android
virtual machine loading device, as shown in FIG. 7. For
illustration, only part of the components in relation to the
embodiments of the invention is indicated. The technical
details not revealed can be referred to the embodiments of the
method in this invention. The Android virtual machine load-
ing device can include a mobile phone, a tablet computer, a
PDA (Personal Digital Assistant, personal digital assistant), a
POS (Point of Sales, sales terminal), an a on-board computer
and any terminal equipments. The following illustrates in
detail, by using a mobile phone as an example.

FIG. 7 illustrates parts of the device (mobile phone) in this
embodiment. The mobile phone includes a RF circuit 1110, a
memory 1120, an input device 1130, a display device 1140, a
sensor 1150, an audio circuit 1160, a wireless fidelity (WiFi)
module 1170, a processor (CPU) 1180, and a power supply
1190, and other components, or the like, including a combi-
nation of two or more of these items.

Each of the components of the mobile phone will be intro-
duced in details as follow.

The RF (radio frequency) circuit 1110 is used to receive
and send electromagnetic waves during a call or message
handing. In particular, the RF circuit 1110 receives downlink
messages from a base station and passes them to the processor
1180 for further processing. In addition, the RF circuit 1110
sends uplink data to the base station. The RF circuit 1110 may
include well-known circuitry for performing these functions,
including but not limited to an antenna system, one or more
amplifiers, an RF transceiver, a coupler, a Low Noise Ampli-
fier (LNA), a duplexer, etc. The RF circuit 1110 may com-
municate with other electronic devices via networks, such as
the internet or wireless. The wireless communication may use
any of a plurality of communications standards, protocols and
technologies, including but not limited to Global System for
Mobile communications (GSM), General Packet Radio Ser-
vice (GPRS), code division multiple access (CDMA), wide-
band code division multiple access (W-CDMA), Long Term
Evolution (LTE), a protocol for email, instant messaging,
and/or Short Message Services (SMS)), or any other suitable
communication protocol, including communication proto-
cols not yet developed as of the filling date of this document.

The memory 1120 is used to store software programs and
applications. In this embodiment, the CPU 1180 run various
software programs and/or sets of instructions stored in the
memory 1120 to perform various functions for the mobile
phone and to process data. The memory 1120 may include a
program section and a data storage section for storing data,
wherein the storage section can be used to store operating
system program, at least one application (such as sound play-
back, image playback, etc.) for a certain required function.
The data storage section can be used to store data created by
the mobile phone during operation (such as audio data, phone

10

15

20

25

30

35

40

45

50

55

60

65

8

book, etc.). In addition, the memory 1120 may include high
speed random access memory and may also include non-
volatile memory, such as one or more magnetic disk storage
devices, flash memory devices, or other non-volatile solid
state memory devices.

The input device 1130 can be used to receive input number
or character information, and generate key signal input in
relation to user settings and functional control of the mobile
phone. In one example, the input device 1130 includes a touch
panel 1131 and other input devices 1132. The touch panel
1131, which may be a touch screen, forms, for example, a
touch-sensitive surface that accepts user input (for example,
users use a finger, a stylus, and any other suitable object or
attachment on or near the touch panel 1131). In addition, the
touch panel 1131 drives a connecting device according to
pre-set drivers. The touch screen 1131 may include a touch-
sensitive device and a touch screen controller. In operation,
the touch-sensitive device detects contact (and any movement
or break of the contact) on its surface. In an exemplary
embodiment, a point of contact between the touch screen
1131 and the user corresponds to one or more digits of the
user. The touch-sensitive device detects the contact and sends
a corresponding signal to the touch screen controller. The
touch screen controller receives the signal and converts the
detected contact into contact coordinates, and further sends
the coordinates to the CPU 1180. Besides, the touch screen
controller receives and executes instructions from the CPU
1180. In this embodiment, the touch screen 1131 may detect
contact and any movement or break thereof using any of a
plurality of touch sensitivity technologies, including but not
limited to capacitive, resistive, infrared, and surface acoustic
wave technologies, as well as other proximity sensor arrays or
other elements for determining one or more points of contact
with the touch screen 1131. In addition, the input device 1130
may include other input devices 1132. For example, the other
input devices 1132 include but not limited to one or any of the
combination of a physical keyboard, function keys (such as
volume control keys, switches keys, etc.), a trackball, a
mouse, an operating lever.

The display device 1140 is used to displays virtual output
to the user. The virtual output may include input information
of the user, or information provided to the user, or different
kinds of menu of the mobile phone. The display device 1140
may include, for example, a display panel 1141, and the
display panel 1141 may, for example, use LCD (liquid crystal
display) technology, or OLED (Organic Light-Emitting
Diode) technology, although other display technologies may
be used in other embodiments. In addition, the touch panel
1131 may cover the display panel 1141. When the touch panel
1131 detects contacts on or near its surface and sends a
corresponding signal to the processor 1180 to determine the
type of touch event, the processor 1180 controls the display
panel 1141 to provide appropriate virtual output according to
different types of contacts. Although the touch panel 1131
and the display panel 1141 may be separated from each other
to implement input and output function of the mobile phone,
however, the touch panel 1131 and the display panel 1141
may be integrated together to implement input and output
functions of the mobile phone.

The mobile phone may further include at least one sensor
1150, such as a light sensor, a motion sensor and other sen-
sors. Specifically, the optical sensor may include an ambient
light sensor and a proximity sensor, wherein the ambient light
sensor can be used to adjust brightness of the display panel
1141 according to the brightness of ambient light. The prox-
imity sensor can be used to close the display panel 1141
and/or backlighting, when the mobile phone is operated near

US 9,354,919 B2

9

to the ear. The accelerometer sensor is one example of the
motion sensor. In particular, the accelerometer sensor may
detect acceleration of each direction (typically three axes).
When the mobile phone is keep static, magnitude and direc-
tion of gravity can be detected by the accelerometer sensor.
Thus the accelerometer sensor can be used to identify posture
of the mobile phone (such as horizontal and vertical screen
switch, related games, magnetometer calibration posture),
vibration recognition related functions (e.g., pedometer, per-
cussion), etc.; Furthermore, a gyroscope, a barometer, a
hygrometer, a thermometer, or an infrared sensor, or other
sensors can also be configured in the mobile phone, further
details of such sensors will not be described here.

The audio circuit 1160, the speaker 1161, and the micro-
phone 1162 provide an audio interface between a user and the
mobile phone. The audio circuit 1160 receives audio data and
converts the audio data to an electrical signal, and transmits
the electrical signal to the speaker 1161. The speaker 1161
converts the electrical signal to human-audible sound waves.
In addition, the audio circuit 1160 also receives electrical
signals converted by the microphone 1162 from sound waves.
The audio circuit 1160 converts the electrical signal to audio
data and transmits the audio data to the CPU 1180 for pro-
cessing. The audio data may be transmitted to another mobile
phone via the RF circuit 1110, or transmitted to the memory
1120 for further processing.

WiFi is a short-range wireless technology. The mobile
phone can help users to send and receive email, browse web
service and access to streaming media etc. via a WiFi module
1170. In this embodiment, the WiFi module 1170 provides
users with wireless broadband Internet accessing service.
Although FIG. 7 shows a WiFi module 1170, it is noted that
the WiFimodule 1170 is only part of the mobile phone, that is,
the WiFi module 1170 can be omitted in other embodiments
without departing from the spirit of the present disclosure.

The processor 1180 may be, conceptually, a center of the
mobile phone, and may be used, for example, to connect all
parts of the mobile phone using a variety of interfaces and
connections. In this embodiment, the processor 1180 runs
various software programs and/or sets of instructions stored
in the memory 1120 to perform various functions for the
mobile phone and to process data. Generally, the processor
1180 may include one or more processing units or processors.
Preferably, the processor 1180 may integrate an application
processor and a modem processor, wherein the application
processor is used mainly for processing operating system,
user interface and applications, etc., and the modem proces-
sor is used mainly for wireless communications. It is noted, in
other embodiments, the modem processor may not be inte-
grated into the processor 1180.

The mobile phone may further include a power supply
1190 (such as battery) for providing power to various com-
ponents. Preferably, the power supply 1190 can be logically
connected to the processor 1180 via a power management
system, and thus achieve management of charging, discharg-
ing, saving power, and other functions.

Although it is not shown in FIG. 7, the mobile phone may
further include a camera, a Bluetooth module, etc., which are
not further described here.

The devices described above according to various embodi-
ments are merely illustrative. The units/modules depicted as
separate components may be or may not be physically sepa-
rated. Components shown as units may be or may not be
physical units. That is, they may be located in one place or
may be distributed to multiple network units. According to

10

15

20

25

30

35

40

45

55

60

65

10

practical needs, part or all of the units/modules can be
selected to achieve the purpose according to various embodi-
ments.

The methods and device in accordance with various
embodiments can be accomplished using a program/software
to instruct related hardware. The hardware can include any
suitable universal hardware, or any suitable specialized hard-
ware including, e.g., specialized integrated circuits, special-
ized central processing unit (CPU), specialized memory, spe-
cialized components, etc. For example, the hardware can
include personal computer, server, network device, etc. The
program/software can be stored in a computer-readable stor-
age medium including, e.g., ROM/RAM, magnetic disk, opti-
cal disk, etc.

Without limiting the scope of any claim and/or the speci-
fication, examples of industrial applicability and certain
advantageous effects of the disclosed embodiments are listed
for illustrative purposes. Various alternations, modifications,
or equivalents to the technical solutions of the disclosed
embodiments can be obvious to those skilled in the art and can
be included in this disclosure.

The disclosed methods and device can be used in a variety
of Internet applications. Exemplary methods can be imple-
mented by mobile terminals. By using the disclosed methods
and device, for example, an Android virtual machine loading
method and device can be provided to load a management
object by a layer-booting object, and then load multiple
instances of the virtual machine. The virtual machine can be
running when switching between the instances. Therefore, an
Android device can switch between instances without the
need to reboot, or without the need to re-boot Bootloader to
select the appropriate virtual machine to load. Therefore, the
virtual machine can be running while performing a hot switch
to switch instances, thus increased switching speed.

What is claimed is:

1. A method comprising:

loading a layer-booting object that is a Linux Kernel layer
object;

loading a management object of a virtual machine by the
loaded layer-booting object;

reading a configuration of the virtual machine by the
loaded management object of the virtual machine;

invoking a creation function of the loaded management
object of the virtual machine by the read configuration
and thereby creating a zygote process; and

creating an operational instance of the virtual machine
based on Android Runtime layer by the zygote process.

2. The method according to claim 1, wherein

the configuration further includes a processor status regis-
ter instruction set corresponding to the operational
instance of the virtual machine; and

the method further comprising:
coding the processor status register instruction set by

invoking an instruction coding function of the loaded
management object of the virtual machine.

3. The method according to claim 1, further comprising:

accepting switching instructions of the virtual machine;
and

invoking a switching function of the loaded management
object of the virtual machine by the accepted switching
instructions of the virtual machine and thereby switch-
ing the operational instance of the virtual machine.

4. The method according to claim 1, further comprising:

accepting creation instructions of the virtual machine; and

invoking a creation function of the management object of
the virtual machine by the accepted creation instructions

US 9,354,919 B2

11

of'the virtual machine and thereby creating a new opera-

tional instance of the virtual machine.

5. The method according to claim 1, further comprising:

accepting switching instructions of the virtual machine;
and

invoking a switching function of the loaded management
object of the virtual machine by the accepted switching
instructions of the virtual machine and thereby switch-
ing the operational instance of the virtual machine.

6. The method according to claim 1, further comprising:

accepting creation instructions of the virtual machine; and

invoking a creation function of the loaded management
object of the virtual machine by the accepted creation
instructions of the virtual machine and thereby creating
the a new operational instance of the virtual machine.

7. A method comprising:

loading a layer-booting object that is a bootloader layer
object;

loading a management object of a virtual machine by the
loaded layer-booting object;

reading a configuration of the virtual machine by the
loaded management object of the virtual machine;

invoking a creation function of the loaded management
object of the virtual machine by the read configuration
based on Linux Kernel layer and thereby creating an
operational instance of the virtual machine;

intercepting interruption instructions and/or abnormal
instructions by the loaded management object of the
virtual machine;

accepting a memory location corresponding to the inter-
cepted instructions and/or abnormal instructions; and

transmitting the intercepted instructions and/or abnormal
instructions to a corresponding instructions handling
function and/or an abnormal handling function of the
operational instance of the virtual machine by the
accepted memory location.

8. The method according to claim 7, further comprising:

accepting switching instructions of the virtual machine;
and

invoking a switching function of the loaded management
object of the virtual machine by the accepted switching
instructions of the virtual machine and thereby switch-
ing the operational instance of the virtual machine.

9. The method according to claim 7, further comprising:

accepting creation instructions of the virtual machine; and

invoking a creation function of the loaded management
object of the virtual machine by the accepted creation
instructions of the virtual machine and thereby creating

a new operational instance of the virtual machine.

10. A device comprising:
at least one computer configured to provide:

aboot-object loading module configured to load a layer-
booting object that is a Linux Kernel layer object;

amanagement object loading module configured to load
a management object of a virtual machine by the
loaded layer-booting object;

a configuration reading module configured to read a
configuration of the virtual machine by the loaded
management object of the virtual machine; and

a virtual machine configuration initialization module
configured to invoke a creation function of the loaded
management object of the virtual machine by the read
configuration and thereby create a zygote process,
and to create an operational instance of the virtual
machine based on Android Runtime layer by the
Zygote process.

10

15

20

25

30

35

40

45

50

55

60

65

12

11. The device according to claim 10, wherein the configu-
ration further includes:

a processor status register instruction set corresponding to

the operational instance of the virtual machine; and

the configuration reading module is further configured to
code the processor status register instruction set by
invoking an instruction coding function of the loaded
management object of the virtual machine.

12. The device according to claim 10, wherein the at least
one computer is further configured to provide a virtual
machine switching module configured to accept a switching
instructions of the virtual machine, and to invoke a switching
function of the management object of the virtual machine by
the accepted switching instructions of the virtual machine and
thereby switch the operational instance of the virtual
machine.

13. The device according to claim 10, wherein the at least
one computer is further configured to provide a virtual
machine creating module configured to accept a creation
instructions of the virtual machine, and to invoke a creation
function of the loaded management object of the virtual
machine by the accepted creation instructions of the virtual
machine and thereby create a new operational instance of the
virtual machine.

14. A comprising:

at least one computer configured to provide:

aboot-object loading module configured to load a layer-
booting object that is a bootloader layer object;

amanagement object loading module configured to load
a management object of a virtual machine by the
loaded layer-booting object;

a configuration reading module configured to read a
configuration of the virtual machine by the loaded
management object of the virtual machine; and

a virtual machine configuration initialization module
configured to invoke a creation function of the loaded
management object of the virtual machine by the read
configuration based on Linux Kernel layer and
thereby create an operational instance of the virtual
machine,

wherein the at least one computer is further configured to

provide an instructions scheduling module configured to
intercept interruption instructions and/or abnormal
instructions by the loaded management object of the
virtual machine, to accept a memory location corre-
sponding to the intercepted instructions and/or abnor-
mal instructions, and to transmit the instructions and/or
abnormal instructions to a corresponding instructions
handling function and/or a abnormal handling function
of the operational instance of the virtual machine by the
memory location.

15. A non-transitory computer readable storage medium
storing one or more programs, the one or more programs
comprising instructions, which, when executed by a mobile
device having one or more processors and a display, cause the
mobile device to perform operations including:

loading a layer-booting object that is a Linux Kernel layer

object;

loading a management object of a virtual machine by the

loaded layer-booting object;

reading a configuration of the virtual machine by the

loaded management object of the virtual machine;

invoking a creation function of the loaded management
object of the virtual machine by the read configuration
and thereby creating a zygote process; and

creating an operational instance of the virtual machine

based on Android Runtime layer by the zygote process.

US 9,354,919 B2
13

16. An apparatus comprising :
at least one computer configured to:
load a layer-booting object that is a Linux Kernel layer
object;
load a management object of a virtual machine by the 5
loaded layer-booting object;
read a configuration of the virtual machine by the loaded
management object;
invoke a creation function of the loaded management
object by the read configuration and thereby create a 10
plurality of zygote processes;
create a plurality of operational instances of the virtual
machine based on Android Runtime layer by the plu-
rality of zygote processes, respectively; and
invoke a switching function of the loaded management 15
object to thereby switch from a respective operational
instance of the plurality of operational instances to a
different operational instance of the plurality of
operational instances.

#* #* #* #* #* 20

14

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,354,919 B2 Page 1of1
APPLICATION NO. : 14/478030

DATED : May 31, 2016

INVENTOR(S) : Shuhua Chen et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims:

Claim 14, Column 12, Line 25
Delete “A comprising:” and insert --A device comprising:--, therefor.

Signed and Sealed this
Twentieth Day of September, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

